R16

OUESTION BANK (DESCRIPTIVE)

Subject with Code: VLSI Dessign (16EC431)

Course & Branch: B.Tech - ECE

Year & Sem: IV-B.Tech & I-Sem

Regulation: R16

UNIT –I INTRODUCTION

1	a) Explain the steps involved in fabrication of a p-well process CMOS transistor.	[L2][CO1]	[7M]
	b) List steps involved in n-well process.	[L1][CO1]	[5M]
2	a) Explain clearly about Moore's law.	[L2][CO1]	[4M]
	b) Explain the different steps in n-well fabrication of CMOS transistor, with neat	[L5][CO1]	[8M]
	diagrams.		
3	a) What is the need of VLSI circuits?	[L1][CO1]	[5M]
	b) Compare the relative merits of three different forms of alternative pull ups for an	[L1][CO1]	[7M]
	inverter circuit.		
4	a) Compare CMOS with Bipolar transistors in different aspects.	[L4] [CO1]	[6M]
	b) Design the circuit diagram of a simple BiCMOS inverter and explain its operation.	[L6][CO1]	[6M]
5	Determine the relationship between $I_{ds} \& V_{ds}$ in non-saturated and saturated region.	[L4][CO1]	[12M]
6	Explain the n-MOS fabrication steps with neat sketches and use p^+ masking.	[L5][CO1]	[12M]
	a) Discuss the MOS Transistor operation of three conditions with the help of neat	[L6][CO1]	[6M]
7	sketches		
	b) Illustrate the operation of Bi-CMOS inverter and draw the different alternative	[L3][CO1]	[6M]
	structures.		
8	Discuss the following.	[L6][CO1]	[12M]
	a) Transconductance (g_{m}) and output conductance (g_{ds}) .		
	b) Figure of merit (ω_0).		
9	a) Defend why NMOS technology is preferred more than PMOS technology.	[L5][CO1]	[4M]
	b) Discuss the generations of Integrated Circuits.	[L6][CO1]	[8M]
10	Analyze the different types of alternative pull-ups with neat sketches.	[L4][CO1]	[12M]

UNIT –II VLSI CIRCUIT DESIGN PROCESS

1	a) Explain the different steps involved VLSI Design flow.	[L2][CO2]	[6M]
	b) What is a stick diagram? Design the stick diagram of a three input CMOS NAND	[L1&L6][C	[6M]
	gate.	O2]	
2	a) Discuss the lambda-based design rules with neat sketches.	[L6][CO2]	[6M]
	b) Explain design rules for wires and MOS transistors.	[L6][CO2]	[6M]
3	a) Explain 2µm based design rules with neat sketches.	[L6][CO2]	[6M]
	b) Build a stick diagram and layout of NMOS inverter circuit. Both Input and Output	[L6][CO2]	[6M]
	points should be Polysilicon layer.		
4	a) Explain about Stick's diagram with suitable examples.	[L2][CO2]	[6M]
	b) Develop the schematic and layout for 2-input NAND gate	[L6][CO2]	[6M]
5	a) Design the stick diagram for CMOS inverter?	[L6][CO2]	[5M]
	b) Design the layout diagram for CMOS inverter?	[L6][CO2]	[7M]
6	a) Create a stick diagram for $Y = (AB+CD)^{2}$ using NMOS design style.	[L6][CO2]	[6M]
	b) Design the schematic and layout diagram of 2-input NOR gate using CMOS deign	[L6][CO2]	[6M]
	style.		
	Plan and design a layout diagram for the following functions in CMOS logic.	[L6][CO2]	[12M]
7			
	y = [(a+b).c]'.		
	z=(ab+cd+e)'		
8	a) Organize the layers how polysilicon and Metal type1 contact cut are happen.	[L3][CO2]	[5M]
	b) Explain how the p-MOS transistor forms in lambda-based design rules.	[L2][CO2]	[7M]
9	a) Build the layout of AND-OR-INVERTER in NMOS design Styles.	[L6][CO2]	[8M]
	b) Demonstrate how implant and demarcation lines employed in stick diagrams.	[L3][CO2]	[4M]
10	a) What is MOS layer?	[L1][CO2]	[4M]
	b) Explain different types of MOS layers used in VLSI circuits.	[L3][CO2]	[8M]

UNIT –III GATE LEVEL DRSIGN & PHYSICAL DESIGN

1	a) Design the CMOS implementation of 2X1 mux using transmission gates.	[L6][CO3]	[5M]
	b) Explain the AOI implementation using CMOS design style with neat sketches.	[L2][CO3]	[7M]
2	a) What is switch logic?	[L2][CO3]	[4M]
	b) Explain about pass transistors and transmission gate.	[L1][CO3]	[8M]
3	a) What is pseudo NMOS logic?	[L1][CO3]	[4M]
	b) Design the 2 input NAND gate by using pseudo NMOS logic.	[L6][CO3]	[8M]
4	a) Illustrate the dynamic CMOS logic circuit with any one example.	[L2][CO3]	[8M]
	b) List advantages & disadvantages of dynamic CMOS logic	[L1][CO3]	[4M]
5	Discuss the following below	[L6][CO3]	[12M]
	a) Domino CMOS logic.		
	b) NORA logic.		
6	Explain about complex logic gates with examples.	[L2][CO3]	[12M]
	What is the necessity of floor planning concept in VLSI circuits? and discuss with		[12M]
7	suitable example.	[L1&L6][
		CO3]	
8	What are the design methods used in physical design cycle? Explain the each term	[L1&L2][[12M]
	with suitable diagrams.	CO3]	
9	a) Explain how the clock and power distributions employed in VLSI design circuits	[L2][CO3]	[6M]
	with diagrams.		
	b) Illustrate the Power delay estimation in VLSI circuits.	[L2][CO3]	[6M]
10	Explain and elaborate the following below	[L2&L6][[12M]
		CO3]	
	a) Floorplanning		
	b) Placement		
	c) Routing		

UNIT –IV SUB SYSTEM DESIGN

1	Explain the design of different adders in sub circuit design with neat sketches.	[L1&L6][[12M]
		CO4]	
2	a) What is shifter? List the types of shit registers.	[L1][CO4]	[6M]
	b) Design and explain the shifter implemented by using full adder.	[L6&L2][[6M]
		CO4][5M]	
3	Extend the following sub circuits	[L2][CO4]	[12M]
	a) Parity generators		
	b) Comparators		
4	Design a Arithmetic and Logic Unit circuit with four functions by using multiplexer	[L6][CO4]	[12M]
	logic.		
5	a) Explain about different types of memory elements.	[L2][CO4]	[6M]
	b) Construct the 4*4 array multiplier	[L3][CO4]	[6M]
6	Explain the working of Zero/one detector implemented with adder circuit.	[L2][CO4]	[12M]
	Demonstrate the following	[L2][CO4]	
7			
	a) Unsigned magnitude comparator		[6M]
	b) Asynchronous Counters		[6M]
8	a) Design and Explain the circuit diagram of 3-bit LFSR with example.	[L6&L2][[6M]
		CO4]	
	b) Design and Explain the Johnson counter.	[L6&L2][[6M]
		CO41	
9	a) Design and Explain the circuit diagram of four bit Carry ripple adder.	[L6&L2][[6M]
-		CO41	
		001	
	b) Design and Explain the the ripple counter	[I_2][CO4]	[6M]
10	a) Explain about 4 transistor Dynamic memory cell	[122][C04]	[6M]
10			[our]
	b) Explain the 6 transistor Static memory cell.	[L2][CO4]	[6M]

UNIT –V

SEMICONDUCTOR INTEGRATED CIRCUIT DESIGN AND CMOS TESTING

1	a) Compare the PROM, PAL, PLA.	[L2][CO5]	[6M]
	b) Design the PAL Structure for the Boolean function Y=	[L6][CO5]	[6M]
	AB'C'+ABC+A'B'C'+A'BC.		
2	a) Design and explain the architecture of FPGA.	[L6][CO5]	[6M]
	b) Discuss the merits of FPGA over other architectures.		[6M]
		[L6][CO5]	
3	a) Discuss in details about CPLD structure and explain each block.	[L6][CO5]	[6M]
	b) What is global routing? Discuss the advantages.	[L1&L6][[6M]
		CO5]	
4	Design the logic diagram of PLA for the following.	[L6][CO5]	[12M]
	Y1=A'B'C'+ABC+A'B+ABC'		
	Y2=ABC+A'B'C+AC		
	Y3=A'BC'+AB'C+B'C'		
5	a) Discuss in detail about standard cell design with suitable diagrams.	[L6][CO5]	[6M]
	b) Demonstrate the following	[L2][CO5]	[6M]
	i) I/O pads		
	ii) SPLD		
	iii) LUT		
6	a) What is the need for testing? and explain about Fault simulation.	[L1&L2][[6M]
		CO5]	
	b) Discuss the necessity of testing VLSI circuits.	[L6][CO5]	[6M]
	a) Explain about design strategies for testing.	[L2][CO5]	[6M]
7			
	b) Construct With neat sketches list the testing of various stages.	[L3][CO5]	[6M]
			54.03.53
8	Explain in detail about testing during the VLSI life cycle with neat sketches.	[L2][C05]	[12M]
0	a) What is testing? And explain any three test principles	[] 1&J 2][[6M]
,	a) what is using: And explain any thee test principles.	CO51	
		0005]	
	b) What is controllability and observability?		[6]11
10	a)What is controllability and observability?		
10			[+IVI]
	b) Explain the stuck at 1 and stuck 0 foults with suitable discreme	Laircosi	[Q]\/[]
	b) Explain the stuck at 1 and stuck 0 faults with suitable diagrams.		[OIAT]
1			1

1. C. VIJAYA KUMAR

2. M.SHOBHA

Associate Professor/ECE

Assistant Professor/ECE